Notes

WS-7338, NEW ENDOTHELIN RECEPTOR ANTAGONISTS ISOLATED FROM Streptomyces sp. No. 7338

III. STRUCTURES OF WS-7338 A, B, C AND D AND TOTAL SYNTHESIS OF WS-7338 B

Susumu Miyata, Naoki Fukami, Masahiro Neya, Shigehiro Takase and Sumio Kiyoto

Exploratory Research Laboratories, Fujisawa Pharmaceutical Co., Ltd., 5-2-3 Tokodai, Tsukuba City, Ibaraki 300-26, Japan

(Received for publication December 17, 1991)

In the course of our screening program for endothelin (ET)-1 receptor antagonists we found new cyclic pentapeptides, WS-7338 A ~ D (1~4), in the culture broth of a *Streptomyces* sp. No. 7338. The taxonomy, fermentation, isolation and physicochemical properties of $1 \sim 4$ have been described in the preceding paper¹). Herein we report on the structure elucidation of $1 \sim 4$ and a total synthesis of WS-7338 B (2).

HRFAB-MS measurement yielded a molecular formula of $C_{30}H_{42}N_6O_7$ for WS-7338 A (1), which was consistent with elementary analysis¹⁾ and ¹³C NMR data (Table 1). Total acid hydrosis (6 N HCl, 110°C, 15 hours) of 1 detected Glu, Ala, Val, Leu and Trp in a 1:1:1:1:0.3 molar ratio. The individual amino acid residues were characterized in the ¹H NMR spectra of 1 with the aid of ¹H-¹H COSY, and the complete ¹H NMR assignment is presented in Table 1. The absolute configurations of the amino acids were established by chiral GC-MS analysis²⁾ of N-trifluoroacetyl n-butyl ester derivatives of the WS-7338 A acid hydrolysate: Glu (D), Ala (L), Val (D), Leu (L), Trp (D). The sum of the formulae for the amino acid residues account for the molecular formula of 1 and twelve degrees of unsaturation. The remaining one unsaturation required by the molecular formula of 1 indicated that 1 is a cyclic pentapeptide.

Addition of 1 eq of NaOD to a DMSO- d_6 solution of 1 induced a up-field shift of Glu- γ -CH₂ signal by 0.12 ppm and thus the γ -COOH function of the Glu residue in intact WS-7338 A must be free. In agreement with this assumption, the regiochemistry of the Glu linkage was assigned as normal linkage because of the NOE observation between $C_{\alpha}H$ of the Glu residue and NH of Ala. The order of linkage of the five residues was determined by interpretation of NOE obtained from NOESY experiment (phase-sensitive mode)³⁾. The NH of D-Trp showed a strong cross peak with $C_{\alpha}H$ of L-Leu, the NH of L-Leu was correlated with $C_{\alpha}H$ of D-Val, the NH of D-Val gave cross peak with $C_{\alpha}H$ of L-Ala, and the NH of L-Ala was correlated with $C_{\alpha}H$ of D-Glu. These NOE correlations indicated the following amino acid sequence: -D-Glu-L-Ala-D-Val-L-Leu-D-Trp-. There is only one reasonable combination of the D-Glu and the D-Trp and hence the structure of WS-7338 A was concluded to be 1.

A combination of HRFAB-MS, elementary analysis¹⁾ and ¹³C NMR (Table 1) established the molecular formula of WS-7338 B as C₃₁H₄₄N₆O₇. Conventional amino acid analysis and inspection of ¹H NMR spectra of WS-7338 B (2) confirmed the presence of one residue each of Glu, Ala, allo-Ile, Leu and Trp. The chiral assignment of the individual amino acid was performed by chiral GC-MS analysis²⁾, which permitted us to assign the D-configuration for Glu, allo-Ile and Trp and the L-configuration for Ala and Leu. The displacement of Val in 1 with allo-Ile in 2 can account for the difference of the molecular formulae between 1 and 2. Therefore, structure, cyclo(-D-allo-Ile-L-Leu-D-Trp-D-Glu-L-Ala-), (2), was proposed for WS-7338 B.

In an effort to confirm the structure of **2**, the total synthesis of WS-7338 B (**2**) was carried out, as shown in Scheme 1. Alanine phenacyl ester (**5**) was coupled with Boc–D-Glu(OBzl)–OH (1-ethyl-3-(3-dimethyl-aminopropyl)carbodiimide (WSCD) and 1-hydroxy-benzotriazole (HOBt) in CH₂Cl₂ at 0°C for 3 hours) to give Boc–D-Glu(OBzl)–Ala–O Phenacyl (Pac) (80.4%). Because of the hygroscopic nature

Fig. 1. Structures of WS-7338 A, B, C and D.

WS-7338 A	D-Val-L-Leu-D-Trp-D-Clu-L-Ala-
WS-7338 B	D-allo-Ile - L-Leu - D-Trp-D-Clu-L-Ala
WS-7338 C ^a	D-Leu-L-Leu-D-Trp-D-Glu-L-Ala
ws-7338 D ^a	D-Val-L-Val-D-Trp-D-Glu-L-Ala

^a Structures of WS-7338 C and D are the tentative structures.

		WS-7338 A (1)		WS-7338 B (2)			
		¹ H ^a	¹³ C ^b	Mult	¹ H	¹³ C	Mult
		δ_{H}	$\delta_{\mathbf{c}}$	with.	δ_{H}	δ_{c}	wiult.
D-Val	NH	7.53			7.45		
[D-allo-Ile]°	α	4.15	57.4	d	4.31	55.2	d
	β	1.78	30.9	d	1.58	37.4	d
	γ	0.81	18.3	q	0.78	14.7	q
		0.83	19.2	q	1.30	26.0	t
					1.08		
	δ				0.87	11.5	q
L-Leu	NH	8.54			8.59		
	α	4.11	52.2	d	4.07	52.7	d
	β	1.24	38.8	t	1.20	38.7	t
		~ 1.18					
	γ	1.02	24.0	d	0.96	23.9	d
	δ	0.63	22.2	q	0.63	22.1	q
		0.74	22.4	q	0.73	22.5	q
D-Trp	NH	8.76			8.77		
	α	4.30	55.3	d	4.28	55.6	d
	β	2.92	27.0	t	2.90	26.9	t
		3.26			3.28		
	1-NH	10.80			10.79		
	2	7.12	123.8	d	7.12	123.8	d
	3		110.7	s		110.7	s
	3 _a		127.1	d		127.0	s
	4	7.51	118.4	d	7.52	118.4	d
	5	6.96	118.2	d	6.96	118.1	d
	6	7.04	120.9	D	7.05	120.9	d
	7	1.32	111.4	a	/.31	111.4	a
n Ch	/a NUI	7 40	130.5	8	7.50	150.5	8
D-GIU	INFL	7.40	57 1	đ	7.50	52.5	đ
	ρ	4.23	32.4	u *	4.23	32.3 27.4	u t
	p N	2.15	27.4	ι *	2.16	27.4	۱ ۲
1 10	y NH	2.15	30.5	ι	8 74	50.5	ι ι
L-Ala	~	0.70 1 15	47 4	đ	0.7 4 4.46	47 4	đ
	ß	1.13	14.5	a	1 1 3	14.4	a
CO-X	ρ	1.15	(174.0	4	1.1.3	(173.9	ч с
00-A			172.0	s		172.4	s
			171.9	5		172.0	s
			171.9	5		172.0	s
			171.6	5		171.6	5
			1	3		1 1 / 1.0	

Table 1. ¹H and ¹³C NMR data for WS-7338 A (1) and B (2).

^a 400 MHz in DMSO- d_6 .

^b 100 MHz in DMSO-d₆, assignment was made by C-H COSY.

^c D-allo-Ile for WS-7338 B (2).

of the TFA salt, the protected dipeptide was treated with TFA followed by $4 \times HCl$ in dioxane to afford 6 as the HCl salt (99.2%). Compound 6 was coupled with Boc-D-Trp(For)-OH (WSCD - HOBt in DMF at 0°C for 3 hours) to give Boc-D-Trp(For)-D-Glu(OBzl)-Ala-OPac (85.6%) which was treated with TFA followed by $4 \times HCl$ in dioxane to afford 7 (99.7%). In substantially the same manner, 8 was prepared from 7 (94%). Compound 8 was coupled with Boc-D-allo-Ile-OH (WSCD-HOBt in DMF at 0°C overnight) to give protected linear pentapeptide (9) (93.5%). The action of Zn on 9 (Zn-AcOH, room temperature for 1 hour) resulted in removal of the Pac ester, and treatment with TFA followed by 4N HCl in dioxane gave 10 (84.6%). Cyclization of 10 (WSCD-HOBt in DMF at 10°C overnight)

Table 2. ¹H NMR signal assignment for WS-7338 C (3) and D (4).

		WS-7338 C (3)	WS-7338 D (4)			WS-7338 C (3)	WS-7338 D (4)
		$^{1}\mathrm{H}^{*}$ δ_{H}	^{1}H δ_{H}			$^{1}\mathrm{H}^{a}$ δ_{H}	^{1}H δ_{H}
Leu ¹	NH	7.55	7.80	D-Trp	1-NH	10.79	10.78
[Val ¹] ^e	α	4.38 ^b	4.08	1	2	7.13	7.12
	β	1.36	1.82		3		
	γ	1.53	0.82		3.		
			0.83		4	7.53	7.53
	δ	0.86			5	6.96	6.96
		0.87		1	6	7.03	7.03
Leu ²	NH	8.47	8.38		7	7.32	7.30
[Val ²] ^c	α	4.10	3.78		7.		
	β	1.18	1.70	D-Glu	NH	7.48	7.58
	-	1.24			α	4.24	4.18
	Y	0.99	0.36	1	β	1.87	1.80
			0.78]	γ	2.15	1.90
	δ	0.63		L-Ala	NH	8.56	8.60
		0.73			α	4.38 ^b	4.38
D-Trp	NH	8.68	8.80		β	1.13	1.13
	α	4.29	4.26	1	·		
	β	2.92	2.96				
	-	3.24	3.18				

^a 400 MHz in DMSO- d_6 .

^b Overlapping.

° Val for WS-7338 D (4).

led to protected cyclic pentapeptide (11) (89.7%). Base treatment of 11 ($1 \times NaOH$, room temperature for 15 minutes) gave cyclic pentapeptide (83.3%) which was identical with natural WS-7338 B (2) in all respects.

The structure elucidation of the minor congeners, 3 and 4, was achieved as follows. The molecular

formula of **4** was deduced as $C_{29}H_{40}N_6O_7$ from HRFAB-MS¹⁾. On the basis of conventional amino acid analysis, ¹H NMR data (Table 2), and chiral GC-MS analysis, one residue each of D-Glu, L-Ala, D-Val, L-Val and D-Trp is present in the intact molecule of **4**. The amino acid sequence analysis was performed by interpreting the NOE between NH

Table 3. Vicinal coupling constants (J_{NH,C_aH}) of corresponding amino acid residue in WS-7338 A (1), B (2), C (3) and D (4).

Position ^a	1	2	3	4
1	9 ^b	9.5	9	9
2	7	6.5	6.5	7
3	8.5	8.5	8	8
4	7.5	7.5	7.5	7.5
5	8	8	8	7.5

^a For convenience, L-Ala was located at position 5.

^b Expressed in Hz.

and $C_{\alpha}H$ pairs from neighboring amino acid residues and showed the following sequence: $-Val^{1}-Val^{2}-D-$ Trp³-D-Glu⁴-L-Ala⁵-.

The close similarity of vicinal coupling constants $(J_{\text{NH},C_a\text{H}})$ between relevant amino acid residues in 1 and 2 (Table 3) implied that the conformation of the peptide back bone of 1 closely matched that of 2. These conformations could be stabilized by the two intramolecular hydrogen bonds as judged from the presence of two amide protons showing small temperature coefficients $(\Delta\delta/\Delta T \text{ [ppb/deg] 1: D-Val} (2.1)$, D-Glu (1.0), 2: D-allo-Ile (1.7), D-Glu (1.9)). The striking resemblance of vicinal coupling constants of 4 (Table 3) to 1 and 2 suggested that the conformation of the peptide core of 4 might

resemble those of 1 and 2. From this assumption, we placed the D-Val residue at the 1 position (Val¹) and L-Val at 2 (Val²), thus deriving structure 4 for WS-7338 D.

The structure of WS-7338 C was tentatively assigned as 3 in the same way.

Recently, it came to our attention from a CAS registry search that WS-7338 A is identical with BE-18257 A^{4}) and WS-7338 B with BE-18257 B^{4}).

References

- MIYATA, S.; M. HASHIMOTO, Y. MASUI, M. EZAKI, S. TAKASE, M. NISHIKAWA, S. KIYOTO, M. OKUHARA & M. KOHSAKA: WS-7338, new endothelin receptor antagonists isolated from *Streptomyces* sp. No. 7338.
 I. Taxonomy, fermentation, isolation, physicochemical properties and biological activities. J. Antibiotics 45: 74~82, 1992
- MATSUNAGA, S.; N. FUSETANI, K. HASHIMOTO & M. WALCHLI: Theonellamide F. a novel antifungal bicyclic peptide a marine sponge *Theonella* sp. J. Am. Chem. Soc. 111: 2582~2588, 1989
- BODENHAUSEN, G.; H. KOGLER & R. R. ERNST: Selection of coherence-transfer pathways in NMR pulse experiments. J. Magn. Reson. 58: 370~388, 1984
- YANO, M.; M. IHARA, K. KOJIRI & K. KAWAMURA (Banyu Pharm.): Biological-active substances BE-18257. Jpn. Kokai 94692 ('91), Apr. 19, 1991